ITS Series Generators

2X

ITSD-725

Technical Specifications

Features and Benefits

- Many years of experience in generator construction
- Diesel Engines with Advanced Technology and Quality
- Alternators with Advanced Technology and Quality
- Control Panel Suitable for Flexible Application
- High Quality and Reliable Technology
- Patented Compact Designed and Soundproof Canopy
- Suitable for Heavy-Duty
- Durability
- Wide Range of Affordable Spare Parts
- Low Noise Level
- Low Exhaust Emission
- Low Operating Cost
- Low Fuel Consumption
- Low Oil Consumption
- Tropical 50°C Radiator
- Fuel Filter with Water and Particle Separator
- First Class Product Support
- Global Technical Service and Maintenance Support

Generator General Information

Generator	Frequency	Voltage	Power Factor	Speed	Diesel En	gine	Alternato	ſ		Type of	Gene	rator	Output
Model ITSD-725	Hz 50	V 231/400	CosQ 0,8	rpm 1500	Brand INTER	Model E896TDI	Brand GNP	Model GNP	Series 355M1	Operation Stand By Prime Continuous	kVA 725,0 659,1 461,4	527,3	A 1.047,7 952,4 666,7

Technical Specifications

INTER Diesel Engine Technical Parameters and Matching Parameters

Diesel Engine Main Technical Parameters

Type

General				
Number of Cylinders		8		
Configuration		V - Type		
Aspiration		Turbocharged & Intercooled		
Combustion System		Direct Injection		
Compression Ratio		15,5:1		
Bore	mm	128		
Stroke	mm	155		
Displacement	L	15,948		
Governing Type		Electronic		
Governing Class		G3		
Rotation		Counterclockwise		
Firing Order		1-5-3-6-2-4		
Emission		Tier II		
Filters				
		Dru Tuna, Danlaasahla		
Air Filter		Dry Type, Replaceable		
Fuel Filter		With Water Seperator		
Oil Filter		Element Type, Particulate Trap		
Electrical System				
Voltage	V	24		
Starter	kW	7		
Alternator Output Ampers	А	45		
Alternator Output Voltage	V	28		
Batteries Capacity	Ah	2x135		
Fan				
Diameter	mm	900		
Drive Ratio		1,15:1		
Number of Blades		7		
Material		Plastic		

Blowing

Cooling System		
Radiator Type	50°C	Tropical
Total Coolant Capacity	L	80
Max. Perm. Coolant Outlet Temperature	٥C	105
Max. Perm. Flow Resis. (Cool. System And Piping)	bar	0,5
Max.Temperature of Coolant Warning	٥C	95
Max. Temperature of Coolant Shutdown	°C	98
Thermostat Operation Temperature - Initial Open	°C	68
Thermostat Operation Temperature - Full Open	Oo	71
Delivery of Coolant Pump	m ³/ h	5,60
Min. Pressure Before Coolant Pump	bar	0,5
Radiator Face Area	m²	1,39
Rows	Row	5
Matrix Density	Per / Inch	15,5
Material		Aluminum
Width of Matrix	mm	1162
Height of Matrix	mm	1196
Pressure Cap Setting k	Pa	70
Estimated Cooling Air Flow Reserve	kPa	0,15
Engine Pre Heater Tube (with Circulation Pump)	W	3000
Lubrication System		
Total System	L	28
Minimum Oil Level	L	19
Nominal Motor Operating Temperature	Oo	40
Lubricating Oil Pressure (Rated Speed)	bar	5
Relief Valve Opens	kPa	200
Oil / Fuel Consumption Ratio	%	≤0,5
Normal Oil Temperature	Oo	110

Diesel Engine Matching Parameters

50 Hz @ 1500 r/min		Stand By	Prime
Gross Engine Power	kW	634,0	578,0
Net Engine Power	kW	611,0	555,0
Fan Power Consumption (Belt Pulley Driven)	kW	22,0	22,0
Other Power Loss	kW	1,5	1,0
Mean Effective Pressure	MPa	3,18	2,90
Intake Air Flow	m ³ / min	53,85	51,28
Exhaust Temperature Limit	Oo	600	600
Exhaust Flow	m ³ / min	133,27	126,92
Boost Pressure Ratio		3,40	3,20
Mean Piston Speed	m / s	7,8	7,8
Cooling Fan Air Flow	m ³ / min	810,0	810,0
Typical Generator Output Power	kVA	725	659

Heat Rejection		Stand By	Prime
Energy In Fuel (Heat Of Combustion)	kW	1585,0	1445,0
Gross Heat To Power	kW	634,0	578,0
Energy To Coolant And Lubricating Oil	kW	269,0	245,7
Heat Dissipation Capacity*	kW	111,0	101,0
Energy To Exhaust	kW	460,0	419,0
Heat To Radiation	kW	48,0	43,0

*Intake Intercooled System

ITS POWER GENERATORS Alternator Technical Parameters and Specifications

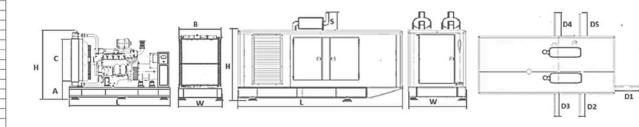
Alternator Te	chnical Parar	neters			
Insulation Class		Н	Field Control System		Self excited
Winding Pitch		2/3 - (N° 6)	A.V.R. Model	Standard	SX440
Wires		12	Voltage Regulation	%	± 1
Protection		IP 23	Sustained Short-Circuit Current	10 sec	300% (3 IN)
Altitude	m	1000	Total Harmonic (*) TGH / THC	%	< 4
Overspeed	rpm	2250	Wave Form :NEMA = TIF - $(*)$		< 50
Air Flow	m³/sec	1,035	Wave Form :I.E.C. = THF - $(*)$	%	< 2
Bearing Drive	N/A	-	Bearing Non - Drive	Bearing	6314-2RZ
Rotor Winding	100%	Copper	Stator Winding	100%	Copper

(*) Total harmonic content line to line, at no load or full rated linear and balanced load

ITS POWER GENERATORS sychron alternators are produced according to TSE 60034-1; IEC 60034-22; GB755; BS4999-5000; NEMA MG 1.22 standards

Alternator Specifications

50 Hz - 231/400V - Cos Q 0,8 - 1500 rpm


Standard Using Alternator				Optional Using Alternator					
Brand/Model	ITS POWER	355M1		Leroy Somer	TAL047F		Stamford S5L1		1D-F
Duty		Continuous			Stand By				
Ambient	C°		40°C				2	7°C	
Class/Temp. Rise	C°		H / 125° K			H / 163° K			
Series Star (V)	V	380/220	400/231	415/240	1 Phase	380/220	400/231	415/240	1 Phase
Parallel Star (V)	V	190/110	200/115	208/120	220	190/110	200/115	208/120	220
Series Delta (V)	V	220	230	240	230	220	230	240	230
Output Power	kVA	659,0	659,0	684,0	-	725,0	725,0	752,0	-
Output Power	kW	527,2	527,2	547,2	-	580,0	580,0	601,6	-

Generator Dimensions

Values		Open Type Generator	Canopy Type Generator
Width	mm	1400	1646
Length	mm	3311	4632
Height	mm	1980	2641
Weight (Net)	Kg	3386	4240
Fuel Tank Capacity	L	1066	400

Generator Technical Drawings

SYMBOL	OPEN	CANOPY
L	3311	4632
W	1400	1645
Н	1980	2000
S		641
A	560	
В	1200	
C	1200	
D1		1002
D2		800
D3		800
D4		800
D5		800

Control operator / Display panel

Diesel Engine and Genset Rating Classifications

The below ratings represent the engine performance capabilities to conditions specified in TS ISO 8528/1, 8528-4, 8528-5, 8528-8, BS5000, ISO 3046/1:1986, NEMA MG-1.22.1, BS 5514/1.

STAND BY POWER RATING (ESP):

ESP is applicable for supplying emergency power for the duration of the utility power outage. No overload capability is available for this rating. Under no condition is an engine allowed to operate in parallel with the public utility at the Stand By Power rating. This rating should be applied where reliable utility power is available. A Stand By rated engine should be sized for a maximum of an 70% average load factor and 200 hours of operation per year. This includes less than 25 hours per year at the Stand By Power rating.

Stand By ratings should never be applied except in true emergency power outages. Negotiated power outages contracted with a utility company are not considered an emergency.

PRIME POWER RATING (PRP):

Applicable for supplying electric power in lieu of commercially purchased power. Prime Power applications must be in the form of one of the following two categories:

UNLIMITED TIME RUNNING PRIME POWER (ULTP):

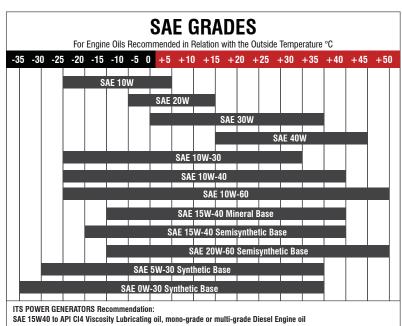
PRP (Prime Power) is available for an unlimited number of hours per year in a variable load application. Variable load should not exceed a 70% average of the Prime Power rating during any operating period of 250 hours. The total operating time at 100% Prime Power shall not exceed 500 hours per year. A 10% overload capability is available for a period of 1 hour within a 12-hour period of operation. Total operating time at the 10% overload power shall not exceed 25 hours per year.

LIMITED TIME RUNNING PRIME POWER (LTP):

LTP (Limited Time Prime Power) is available for a limited number of hours in a nonvariable load application. It is intended for use in situations where power outages are contracted, such as in utility power curtailment. Engines may be operated in parallel to the public utility up to 750 hours per year at power levels never to exceed the Prime Power rating. The customer should be aware, however, that the life of any engine will be reduced by this constant high load operation. Any operation exceeding 750 hours per year at the Prime Power rating should use the Continuous Power rating.

CONTINUOUS POWER RATING (COP):

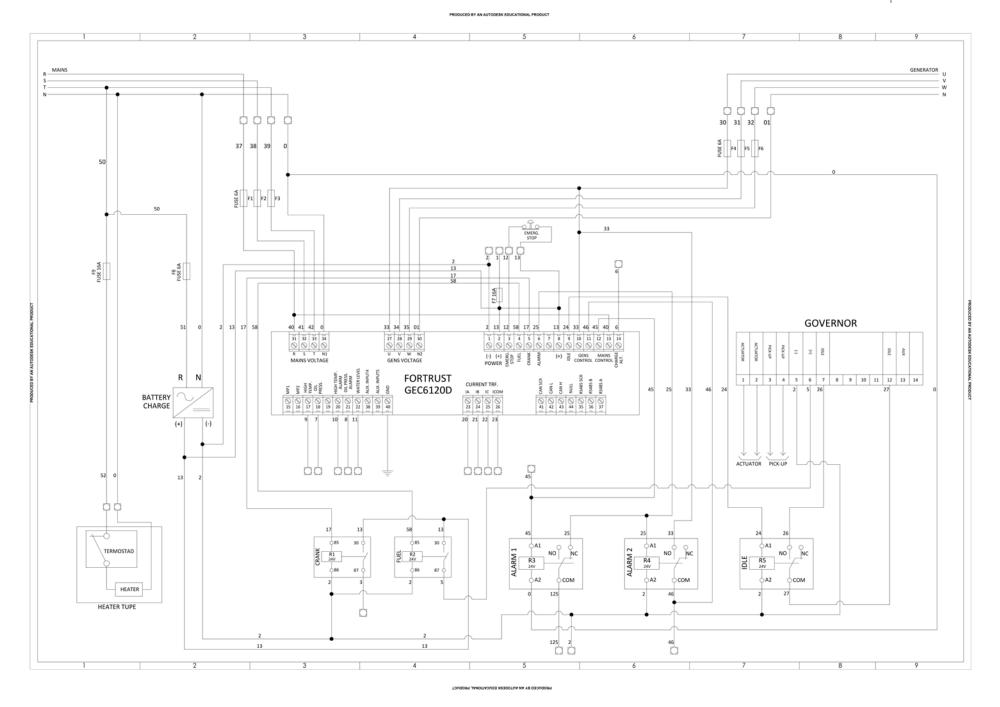
COP is the power that the engine can continue to use under the prescribed speed and the specified environment condition in the normal maintenance period stipulated in the manufacturing plant. And Continuous Power is applicable for supplying utility power at a constant 100% load for an unlimited number of hours per year. No overload capability is available for this rating.

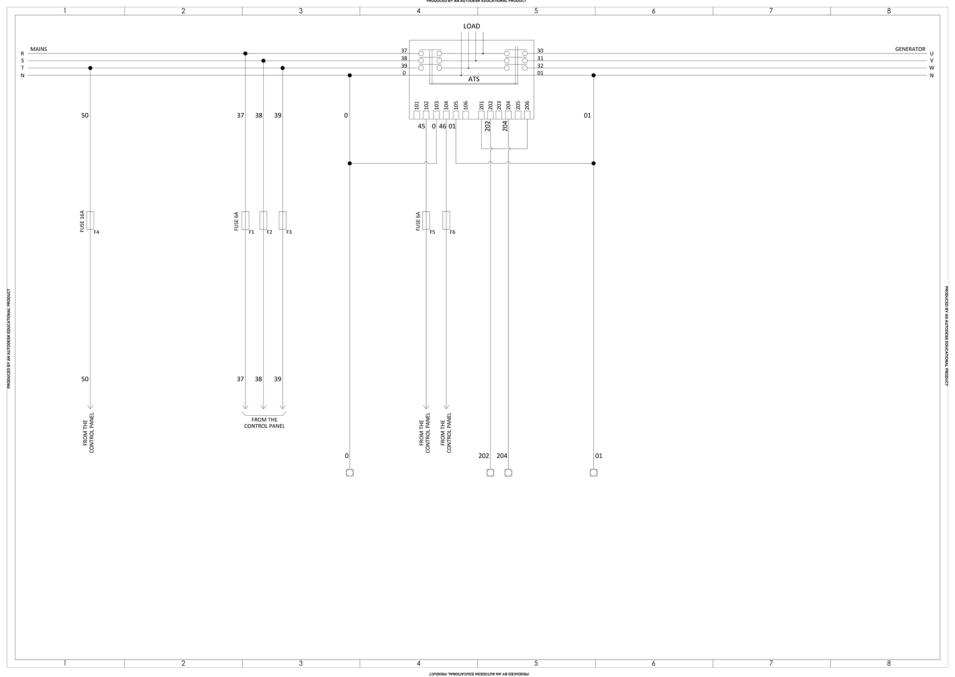

PAY ATTENTION to the points below in picking and using the generator * Generators can work on Continuous Power at 70% of Prime power value if only all maintenances are done on time with original spare parts and high quality

- oils that manufacturer advice.
- * Generators should not operate below 50% of Prime Power value. In such a case, the engine will burn excessive oil and eventually have irreparable damage.
- * If your need is 1000 kVA or above, you should prefer Synchronic Systems with 2-3 generators with failure back up and simultaneous aging.
- * These points will provide advantage for you with purchasing and operating the generator.

Fuel Consumption - Oil Recommendation and Oil Grades

Fuel Consumption					
Percent of Prime power	50Hz - 1500 rpm				
	l/hr				
110%	143,02				
100%	131,73				
75%	99,30				
50%	66,87				


Note: The density of diesel is 0,835 kg/L, Fuel specification: BS 2869: Part 2 1998 Class A2 or (DIN EN 590) ASTM D975 D2 Diesel. The fuel must be clean and without water)



ITSD-725

Technical Specifications

